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Abstract
Several lines of evidence point towards the involvement of the cerebellum in reactive aggression. In addition to the posterior 
cerebellar hemisphere, the vermis has been suggested to play a prominent role in impulse regulation. In the present study, 
we set out to further examine the relationships between cerebellar grey matter volumes, aggression, and impulsivity in 201 
healthy volunteers. 3 T structural magnetic resonance imaging scans were acquired to investigate grey matter volumes of the 
cerebellar vermis and the anterior and posterior lobules. Aggression was assessed with the Buss–Perry Aggression Question-
naire and impulsivity was measured with the Barratt Impulsiveness Scale-11. Results showed that impulsivity was positively 
associated with grey matter volumes of the cerebellar vermis and inversely correlated with grey matter volumes of the right 
posterior lobule. In addition, smaller volumes of the right posterior lobules were associated with higher physical aggression. 
Exploratory analyses indicated that for the right hemisphere, this association was driven by grey matter volumes of lobules 
VIIb and VIIIa. Our findings provide correlational evidence in healthy volunteers for the involvement of the cerebellar vermis 
and posterior lobules in a cortico-limbic-cerebellar circuit of aggression.
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Introduction

Reactive aggression refers to an emotionally charged 
response when an individual is frustrated, threatened, or 
otherwise irritated, and is closely related to anger, approach-
related motivational tendencies, and impulsivity [1–3]. 
Impulsivity involves the tendency to engage in prepotent 
and potentially risky behaviours without planning or con-
sidering the short- and long-term consequences of these 
behaviours [4]. Neuroscientific evidence has demonstrated 
that aggressive tendencies in mammalian species involve 
the subcortical limbic circuit consisting of, most notably, 
the periaqueductal grey in the midbrain, amygdala, and 
hypothalamus [5]. The prefrontal cortex, in turn, exerts a 
regulatory influence over the subcortical circuit and gov-
erns action selection rooted in cognitive appraisal and 
evaluation of anticipated outcomes of behaviour [6]. This 

well-documented cortico-subcortical network provides a 
functional neuroanatomic model for aggression along with 
homeostatic regulatory principles that drive behaviour to 
remove the undesired source of frustration or threat [5, 7]. 
Similarly, impulsive behaviour is modulated through the 
engagement of the prefrontal cortex [8–10] and subcortical 
structures [10–12] in cognitive conflict resolution, reflective 
decision-making, and behavioural inhibition.

In addition to the cortical and limbic areas, several lines 
of evidence from animal and human experimental research 
point towards the involvement of the cerebellum in reactive 
aggression. Cerebellar lesion studies demonstrated associa-
tions between cerebellar lesions and motor and non-motor 
related impairments. Particularly, damage to the vermis and 
posterior lobules can lead to blunting of affect, impulsivity 
and aggressive behaviour [13–17]. Furthermore, symptoms 
of emotion dysregulation have been associated with malfor-
mations of the cerebellum. In particular, impulsivity-related 
forms of aggression have been linked to vermal agenesis as 
well as hypoplasia of the vermis and cerebellar hemispheres 
[18–20].

Further, impulsive and aggressive tendencies in ani-
mals can be directly manipulated with location-specific 
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intracranial electric stimulation. Electric stimulation of the 
deep cerebellar nuclei can cause sham rage and defensive 
aggression in cats [21, 22]. Moreover, a recent study in mice 
demonstrated that optogenetic deactivation of the vermis 
increased aggressive attacks, whereas vermal activation 
was shown to dampen aggressive responses [23]. In humans, 
aggressive behaviour can be mitigated in severely behaviour-
ally disordered patients with subdural electric stimulation of 
the vermis [24]. Others have shown that electric stimulation 
of the anterior lobe improved emotional control and reduced 
outbursts of aggression in patients with epilepsy [25].

Task-based functional magnetic resonance imaging 
(fMRI) studies and functional connectivity with extracer-
ebellar regions have localised affective and cognitive non-
motor processes in specific cerebellar lobules. In particular, 
the vermis and posterior lobules have been found to play a 
role in processes linked to the experience and regulation 
of emotions [26–31]. Together with the results of a recent 
meta-analysis of fMRI studies on anger and aggression, 
associations between rostral lateral parts of the cerebellum 
and indices of aggression can be expected [32]. Additionally, 
structural voxel-based morphometry (VBM) and volumetry 
studies have provided evidence for structural cerebellar grey 
matter irregularities in the context of both impulsivity and 
aggression. In violent offenders, for example, several stud-
ies have found enhanced grey matter volumes in the right 
cerebellum and decreased volumes in the left cerebellum as 
compared to healthy controls [33–37]. By contrast, volume 
reductions of the right hemisphere [33] and total volume 
decreases of the cerebellum have been reported in violent 
offenders [38, 39]. In boys diagnosed with conduct disorder 
who are characterised by antisocial and impulsive behav-
iour, smaller grey matter volumes have been found in vermal 
regions [40, 41] and several posterolateral lobules ([42, 43], 
but see [41] for findings showing local grey matter increases 
in posterolateral lobules). A number of studies has inves-
tigated psychiatric patients exhibiting reactive aggressive 
behaviour, such as intermittent explosive disorder, bipolar 
disorder, obsessive–compulsive disorder, Huntington’s dis-
ease, and borderline personality disorder. Here, smaller grey 
matter volumes in the right posterior lobules and posterior 
vermis as well as the left anterior lobule have been reported 
[44–48]. Yet, other studies found increased grey matter vol-
umes in anterior vermal areas or the left posterior cerebel-
lum in comparison to healthy controls [45, 47, 49]. While 
empirical evidence supports the idea of associations between 
cerebellar grey matter volumes and indices of aggression 
and impulsive behaviour in these psychiatric populations, 
the heterogeneity of findings may in part be explained by 
the relatively small sample sizes and confounds involved 
in testing psychiatric populations, such as the presence of 
comorbidities [50].

Altogether, the evidence from functional and structural 
neuroimaging studies complements previous findings from 
lesions, malformations, and electrical stimulation. In par-
ticular, the cerebellar vermis seems most consistently associ-
ated with aggression and impulsivity, but there is also sup-
port for lateralised involvement of the cerebellar lobules. 
To further investigate the proposed associations between 
cerebellar grey matter volumes, reactive aggression, and 
impulsivity, we explored associations between cerebellar 
grey matter volumes and aggression and impulsivity in a 
large sample of young healthy volunteers. As our primary 
hypothesis, we investigated whether grey matter volume of 
the vermis is correlated with indices of reactive aggression 
and impulsivity. In addition, we explored associations with 
the anterior and posterior cerebellar lobules.

Methods

Participants

Two hundred and twelve healthy volunteers participated in a 
larger longitudinal cohort study at Leiden University Medical 
Centre, the “Braintime” project [51–53]. Out of these, seven 
participants were excluded for excessive motion during the 
anatomical MRI scan (cause of visible artefacts) and four par-
ticipants were excluded because their field of view did not 
include the entire cerebellum. Therefore, 201 participants were 
included in the present analysis. All participants were between 
8 and 26 years old and recruited through advertisements and 
schools. They received compensation and travel reimburse-
ment. Participants over the age of 18 gave written informed 
consent after oral and written instructions were given. Partici-
pants under the age of 18 provided informed consent along 
with their parents. The study was performed in accordance 
with the Declaration of Helsinki and approved by the medical 
ethical review board from Leiden University Medical Centre.

Behavioural Assessment

Buss–Perry Aggression Questionnaire

The Buss–Perry Aggression (BPA) Questionnaire [54] assessed 
four subscales of aggression: physical aggression, verbal aggres-
sion, anger, and hostility. Participants responded on a five-point 
scale ranging from “extremely uncharacteristic of me” to 
“extremely characteristic of me”. A higher score on the BPA 
Questionnaire corresponded to a higher level of aggression.

Barratt Impulsiveness Scale‑11

The Barratt Impulsiveness Scale (BIS-11) was adminis-
tered to measure impulsivity on three subscales: attentional 
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impulsivity, motor impulsivity, and non-planning impulsiv-
ity [55]. On the BIS-11, participants responded on a four-
point scale ranging from “seldom/never” to “almost always”. 
A higher score on the BIS-11 corresponded to a higher level 
of impulsivity.

Image Acquisition

Structural images were acquired on a Philips Achieva 3 T 
MRI Scanner (Philips Healthcare, Best, The Netherlands). 
The T1-weighted structural scan was made with a T1 
Turbo Field Echo (T1 TFE, TR = 9.7 ms, TE = 4.59 ms, flip 
angle = 8°, voxel size = 0.875 × 0.875 × 1.2 mm, slices = 140, 
FOV = 224 × 168 × 177 mm, scanning time = 296 s). All MRI 
scans were reviewed and cleared by a radiologist.

Image Preprocessing

Structural T1 scans were preprocessed using a combina-
tion of FreeSurfer version 5.3 (http:// surfer. nmr. mgh. harva 
rd. edu/), FSL (FMRIB’s Software Library, Oxford, UK) 
version 6.0.0 [56], and SPM12 [57] in MATLAB version 
R2019a (The MathWorks, Inc.).

All raw PAR/REC files were converted to NIfTI with 
dcm2niix [58] and automatically preprocessed with Free-
Surfer’s segmentation pipeline, as part of the MRI pre-
processing pipeline at Leiden University Medical Centre. 
Automated processing steps included nonuniform intensity 
correction and intensity normalisation, skull stripping, and 
subcortical segmentation [59–62]. The subcortical volumet-
ric segmentation provided estimations of the left and right 
cerebellar cortex and white matter [63], which were used in 
further analyses to calculate total cerebellar volume.

In addition to total cerebellar segmentation, structural 
images were processed with the spatially unbiased infraten-
torial template (SUIT) toolbox [64, 65] to get a volume esti-
mate of 28 different regions within the cerebellum. For this 
analysis, structural images were converted back to NIfTI for-
mat after nonuniform intensity correction and intensity nor-
malisation in FreeSurfer. Non-brain structures were removed 
from the structural images using FSL’s Brain Extraction 
Tool (BET2 [66]). To optimise isolation and normalisation, 
the origin of each image was manually set to the anterior 
commissure in SPM12.

Volumetry

Structural images were further processed using the SUIT 
toolbox version 3.4 [64, 65] implemented in SPM12. The 
structural image was cropped and the cerebellum was iso-
lated. The cerebellum was segmented into grey and white 
matter maps. These images were normalised to SUIT atlas 
space with DARTEL, providing an affine transformation 

matrix and nonlinear flowfield. The segmentation maps were 
resliced into SUIT atlas space. The SUIT probabilistic grey 
matter atlas “Lobules-SUIT” was warped back to subject 
space with the affine transformation matrix and nonlinear 
flowfield from previous steps. The grey matter volumes of 
the 28 regions of interest (left and right lobules I–IV, V, VI, 
Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and X, and vermal 
regions of posterior lobules VI, Crus I, Crus II, VIIb, VIIIa, 
VIIIb, IX, and X) in this atlas were then extracted.

Data Reduction and Statistical Analyses

Data reduction and statistical analyses were performed using 
R version 3.6.0 in RStudio version 1.2.1335 for Windows 
[67]. Total and subscale scores for the BPA and BIS-11 
questionnaires were summated. Total cerebellar volume 
(TCV) was calculated as the sum score of FreeSurfer’s sub-
cortical segmentation values (i.e. left and right cerebellar 
cortex and left and right cerebellar white matter). Total ver-
mis volume was calculated as the sum of vermal regions 
VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and X. For left 
and right anterior volumes, left and right lobules I–IV and 
V were added, respectively. For left and right posterior vol-
umes, left and right lobules VI to X were summated, respec-
tively. All volumes were divided by the TCV to correct for 
individual differences in absolute cerebellar volume. All var-
iables were z-transformed to standardise variable values and 
the categorical variable sex was sum-coded. For all models, 
standardised coefficient estimates are reported.

To address our main hypothesis on the associations 
between aggression, impulsivity, and grey matter volumes 
of the cerebellum, we performed multiple linear stepwise 
regression analyses. For every behavioural scale of the BPA 
and BIS-11 questionnaires (i.e., both total and respective 
subscales), a first regression model was analysed where 
cerebellar grey matter volumes (vermis, left + right anterior 
lobe, and left + right posterior lobe) were entered simultane-
ously in a stepwise regression analysis to model aggression 
or impulsivity (model 1). In the second regression model 
(model 2), we examined the robustness of any significant 
findings from model 1 after adding age and sex as covariates.

To explore possible associations between specific cerebel-
lar lobules and BPA and BIS-11 scores, sum scores of each 
hemisphere were further analysed. In case the sum score 
of a posterior lobe was a significant predictor of aggres-
sion or impulsivity, partial Pearson’s correlations were per-
formed with separate lobules to investigate the specific lob-
ules involved in the findings, corrected for age and sex. The 
anterior lobes are typically too small to make an accurate 
distinction between lobules I–IV and V based on 3 T MRI 
images, so the anterior lobules were not further analysed.

For each regression model, normality and homoscedas-
ticity of residuals were visually inspected and the absence 

http://surfer.nmr.mgh.harvard.edu/
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of multicollinearity was confirmed if variance inflation fac-
tors for individual predictors were below 10. Outliers in the 
regression models were selected based on cutoff values, and 
regression models were performed with and without outliers 
to assess whether potential associations found are driven 
purely by extreme data points. Cutoff values used were 
Cook’s distance > 1, absolute standardised residuals > 3.3, 
leverage > 0.5, or Mahalanobis distance > (0.999 × number 
of independent variables). The statistical significance for 
these exploratory analyses was set at < 0.05 (two-tailed), 
with FDR correction applied per model [68].

Results

Demographics of the study population, BPA and BIS-11 
scores, and cerebellar volumes are summarised in Table 1.

For each model, a maximum of two outliers was detected. 
The exclusion of the outliers did not change the results, sug-
gesting that none of the findings was driven by extreme data 
points. Therefore, all analyses reported here are based on the 
complete sample.

Higher levels of BPA physical aggression scores were 
associated with lower grey matter volumes of the right 
posterior cerebellum (Table 2, Fig. 1A). Follow-up partial 

Table 1  Demographics of the study sample

Data are presented as mean ± standard deviation (range) for continu-
ous variables and as number (percentage of total) for categorical vari-
ables

Demographics Total population (n = 201)

Age (years) 14.6 ± 3.6 (8.0–26.0)
Male (n) 89 (44.3%)
Buss–Perry Aggression (BPA) Questionnaire
BPA physical aggression 24.5 ± 8.4 (9–53)
BPA verbal aggression 20.2 ± 3.5 (10–30)
BPA anger 18.4 ± 6.5 (7–38)
BPA hostility 22.7 ± 8.2 (8–45)
BPA total 85.8 ± 18.8 (40–144)
Barratt Impulsiveness Scale (BIS-11)
BIS-11 attentional impulsivity 15.6 ± 3.4 (8–25)
BIS-11 motor impulsivity 21.2 ± 3.7 (13–34)
BIS-11 non-planning impulsivity 24.8 ± 4.3 (11–37)
BIS-11 total 61.6 ± 9.2 (36–88)
Cerebellar volumes
Total cerebellum  (cm3) 151.0 ± 12.8 (122.5–183.7)
Vermis (VI–X)  (cm3) 6.3 ± 0.6 (4.9–8.0)
Left anterior lobe (I–V)  (cm3) 8.8 ± 0.8 (6.7–10.8)
Right anterior lobe (I–V)  (cm3) 9.2 ± 0.9 (7.1–11.2)
Left posterior lobe (VI–X)  (cm3) 59.3 ± 4.7 (47.7–70.6)
Right posterior lobe (VI–X)  (cm3) 56.2 ± 4.6 (45.3–68.5)
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correlations indicated an association between physical 
aggression scores and right lobule VIIb (r(197) =  − 0.17, 
p < 0.05) as well as right lobule VIIIa (r(197) =  − 0.17, 
p < 0.05) (Fig. 1B, C). None of the other right posterior lob-
ules was significantly associated with physical aggression 
scores (ps > 0.05, Table 3). The BPA scales total aggression, 
verbal aggression, anger, and hostility were not significantly 
related to any of the cerebellar volumes (all ps > 0.055, 
Table 2).

Higher total BIS-11 impulsivity scores were associ-
ated with higher vermal volumes and lower volumes of the 
right posterior cerebellum (Table 4, Fig. 2A). Analyses on 
the subscales provided evidence for differential cerebel-
lar involvement in the manifestation of different aspects of 
impulsivity (Table 4). Higher attentional impulsivity scores 

were associated with higher vermal volumes (Fig. 2B), while 
both higher motor and non-planning impulsivity scores were 
associated with higher volumes of the vermis and lower vol-
umes of the right posterior cerebellum (Fig. 2C, D). Fol-
low-up partial correlations with individual lobules of the 
right posterior cerebellum did not yield any evidence for the 
involvement of a specific lobule in total impulsivity, motor 
impulsivity, and non-planning impulsivity (all ps > 0.101, 
Supplementary Table 1).

Discussion

Our results provide evidence for positive associations 
between impulsivity scores and grey matter volumes of the 
vermis. Additionally, higher impulsivity scores were associ-
ated with decreased grey matter volumes in the right poste-
rior lobe. While no relations were found between aggression 
scores and grey matter volumes of the vermis, higher physi-
cal aggression scores were correlated with lower grey mat-
ter volumes of the right posterior cerebellum, particularly 
lobules VIIb and VIIIa.

The present positive relationship between impulsivity 
scores and grey matter volumes of the vermis is in line with 
the proposed cerebellar involvement in the regulation of 
impulse-related actions [69, 70]. Intracranial electric stimu-
lation studies in animals reported that stimulation of the ver-
mis dampens impulsive aggressive responses [24], arguably 
through Purkinje cell-related inhibition of the forebrain [23]. 
In addition, the presence of structural pathways between 

Fig. 1  BPA physical aggression scores modelled by cerebellar grey 
matter volumes of the right posterior lobe corrected for age and sex. 
A Physical aggression scores associated with grey matter volumes of 
the right posterior lobe; B Physical aggression scores associated with 
grey matter volume of the right lobule VIIb; C Physical aggression 

scores associated with grey matter volume of the right lobule VIIIa. 
Grey bars represent the 95% confidence interval of the regression 
coefficients. All grey matter volumes are normalised by z-transfor-
mation. Abbreviations: BPA, Buss–Perry Aggression Questionnaire; 
GMV, grey matter volume

Table 3  Pearson’s partial 
correlations between grey 
matter volumes of right 
posterior lobules and physical 
aggression scores corrected for 
age and sex

BPA physical 
aggression

r p

Right VI  − 0.12 0.100
Right Crus I  − 0.13 0.072
Right Crus II  − 0.04 0.527
Right VIIb  − 0.17 0.017
Right VIIIa  − 0.17 0.012
Right VIIIb  − 0.05 0.480
Right IX  − 0.09 0.199
Right X  − 0.14 0.057
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the cerebellum and reward-sensitive brain areas such as the 
basal ganglia [71, 72] has recently been complemented by 
research showing functional connectivity between the ver-
mis and basal ganglia [73, 74]. It was found that stronger 
signal dependency between these areas was associated with 
lower levels of impulsivity [73]. The anatomical and func-
tional relationship between the vermis, basal ganglia, and 
forebrain suggests an active contribution of the vermis to 
approach- and reward-related action tendencies [75] and 
impulse control [76].

Before behavioural inhibition and action tendencies 
come into play, rapid increases in arousal and autonomic 
activity constitute the physiological basis of anger and the 
increased likelihood of reactive aggression [77]. Evidence 
for cerebellar involvement in arousal and autonomic activity 
comes from electric stimulation of the cerebellum in ani-
mals, which was found to alter neural activity within the 
reticular formation of the brainstem [78]. The reciprocity 
of this anatomic relation was evidenced by the existence of 
efferent nerve fibres of the reticular formation of the medulla 
oblongata to several areas of the anterior lobe and posterior 
vermis including the pyramis and uvula of the cat brain [79]. 
Interestingly, no contact points were seen in the adjacent 
ansoparamedian regions, corresponding to the Crus II and 
VIIb lobules in humans [79]. Additional experimental sup-
port for the role of the cerebellum in autonomic activity 
comes from electric stimulation of the anterior lobe of the 
vermis and fastigial nucleus [80]. The link between arousal 
and impulse control is illustrated by observations of patients 
with aggressive episodes in which the subcortical and corti-
cal brain regions implicated in arousal and emotion regula-
tion appear to be decoupled [81]. The presence of reticulo-
cerebellar connections together with the finding that electric 
stimulation of the vermis and fastigial nucleus can alter auto-
nomic responsiveness of hypothalamic-induced sham rage 
[22] may provide an anatomic and functional basis for our 
findings in addition to the regulation of approach-related 
tendencies and behavioural inhibition.

The association between the volume of the cerebellar ver-
mis and impulsivity concurs with a previous clinical study 
that also found a positive relation between vermal volume 
and BIS-11 motor impulsivity in psychiatric patients charac-
terised by impairments in emotion regulation as compared to 
healthy controls [49]. Notably, these findings contrast earlier 
work in rhesus monkeys where ablation of the vermis actu-
ally dampened reactive aggression, whereas no such effect 
was seen when the lateral parts of cerebellar hemispheres 
were damaged [82]. Furthermore, increased impulsivity and 
aggressive behaviour have been reported after damage to as 
well as agenesis or hypoplasia of the vermis [13–15, 20]. 
It should be noted that the association between grey matter 
volumes of the vermis and impulsivity in our study does 
not warrant strong inferences on its functional implications. Ta

bl
e 

4 
 B

IS
-1

1 
to

ta
l i

m
pu

ls
iv

ity
 a

nd
 su

bs
ca

le
 sc

or
es

 a
ss

oc
ia

te
d 

w
ith

 c
er

eb
el

la
r g

re
y 

m
at

te
r v

ol
um

es
, a

ge
, a

nd
 se

x,
 m

od
el

le
d 

by
 li

ne
ar

 re
gr

es
si

on

ad
j, 

ad
ju

ste
d;

 β
, s

ta
nd

ar
di

se
d 

be
ta

; B
IS

-1
1,

 B
ar

ra
tt 

Im
pu

ls
iv

en
es

s S
ca

le
; C

I, 
co

nfi
de

nc
e 

in
te

rv
al

; L
., 

le
ft;

 p
os

., 
po

ste
rio

r; 
R.

, r
ig

ht
c  FD

R
 c

or
re

ct
ed

; s ste
pw

is
e 

an
al

ys
es

BI
S-

11
 to

ta
l i

m
pu

lsi
vi

ty
BI

S-
11

 a
tte

nt
io

na
l i

m
pu

lsi
vi

ty
BI

S-
11

 m
ot

or
 im

pu
lsi

vi
ty

BI
S-

11
 n

on
-p

la
nn

in
g 

im
pu

lsi
vi

ty

M
od

el
Pr

ed
ic

to
r

β
95

%
 C

I
p

Pr
ed

ic
to

r
β

95
%

 C
I

p
Pr

ed
ic

to
r

β
95

%
 C

I
p

Pr
ed

ic
to

r
β

95
%

 C
I

p

1.
 C

er
eb

el
la

r 
gr

ey
 m

at
te

r 
 vo

lu
m

es
s

Ve
rm

is
0.

28
0.

11
; 0

.4
5

0.
00

1
Ve

rm
is

0.
18

0.
04

; 0
.3

1
0.

01
3

Ve
rm

is
0.

24
0.

07
; 0

.4
1

0.
00

5
Ve

rm
is

0.
23

0.
06

; 0
.4

0
0.

00
8

R
. p

os
 −

 0.
17

 −
 0.

34
; −

 0.
00

0.
04

8
R

. p
os

 −
 0.

17
 −

 0.
34

; −
 0.

00
0.

04
8

R
. p

os
 −

 0.
17

 −
 0.

33
; −

 0.
00

0.
05

2
R2 /R

2  a
dj

0.
05

3/
0.

04
3

R2 /R
2  a

dj
0.

03
1/

0.
02

6
R2 /R

2  a
dj

0.
04

0/
0.

03
0

R2 /R
2  a

dj
0.

03
6/

0.
02

6
F(

2,
 1

98
)

5.
50

9
F(

1,
 1

99
)

6.
31

7
F(

2,
 1

98
)

4.
08

3
F(

2,
 1

98
)

3.
70

8
pc

0.
02

3
pc

0.
03

9
pc

0.
04

1
pc

0.
04

7
2.

 M
od

el
 

1 +
 ag

e 
an

d 
se

x

Ve
rm

is
0.

30
0.

12
; 0

.4
8

0.
00

1
Ve

rm
is

0.
14

 −
 0.

01
; 0

.2
8

0.
06

4
Ve

rm
is

0.
25

0.
07

; 0
.4

3
0.

00
8

Ve
rm

is
0.

30
0.

12
; 0

.4
8

0.
00

1
R

. p
os

 −
 0.

18
 −

 0.
35

; −
 0.

01
0.

03
6

A
ge

0.
11

 −
 0.

04
; 0

.2
5

0.
14

5
R

. p
os

 −
 0.

17
 −

 0.
34

; 0
.0

1
0.

05
7

R
. p

os
 −

 0.
21

 −
 0.

38
; −

 0.
04

0.
01

5
A

ge
 −

 0.
05

 −
 0.

20
; 0

.1
0

0.
49

6
Se

x
 −

 0.
06

 −
 0.

20
; 0

.0
8

0.
41

3
A

ge
 −

 0.
01

 −
 0.

16
; 0

.1
4

0.
86

9
A

ge
 −

 0.
18

 −
 0.

32
; −

 0.
03

0.
01

8
Se

x
 −

 0.
02

 −
 0.

16
; 0

.1
2

0.
77

0
Se

x
0.

04
 −

 10
; 0

.1
8

0.
60

1
Se

x
 −

 0.
03

 −
 0.

17
; 0

.1
1

0.
68

8
R2 /R

2  a
dj

0.
05

6/
0.

03
6

R2 /R
2  a

dj
0.

04
3/

0.
02

8
R2 /R

2  a
dj

0.
04

1/
0.

02
1

R2 /R
2  a

dj
0.

06
5/

0.
04

6
F(

4,
 1

96
)

2.
88

8
F(

3,
 1

97
)

2.
95

2
F(

4,
 1

96
)

2.
09

5
F(

4,
 1

96
)

3.
42

8
pc

0.
03

9
pc

0.
04

2
pc

0.
08

3
pc

0.
02

4



The Cerebellum 

1 3

Nevertheless, given the connections to the autonomic, 
arousal, and limbic brain regions, the vermis and its subse-
quent contribution to impulsive behaviour may be driven by 
a strong interoceptive-oriented mode of action.

It is worth mentioning that the association between the 
left anterior cerebellum and total aggression showed a mar-
ginally significant FDR-corrected effect (p = 0.055). While 
not statistically significant, the relation may nonetheless be 
indicative of a connection to motor components of anger and 
reactive aggression [83–85]. Prior work has shown that rela-
tive higher left-to-right sided levels of motor cortical excit-
ability as assessed with transcranial magnetic stimulation 
are correlated to anger and aggression in healthy volunteers 
[86]. Given the existence of such a cerebral motor asym-
metry in the forebrain in conjunction with the contralateral 
cerebello-cortical connections, it is tempting to suggest 
an analogous but reversed asymmetry in the anterior cer-
ebellum. Yet, further research is necessary to establish a 
more robust association between the left anterior lobe and 
aggression.

Higher physical aggression scores were found to be 
related to lower grey matter volumes of right posterior lob-
ules VIIb and VIIIa. Our results concur with several studies 
in clinical populations that found evidence for reductions of 
right posterior lobules in psychiatric patients with aggres-
sive symptoms including lobules VI [48], Crus I-II [42, 44, 
46], VIIIb [33, 43], and X [43]. However, higher grey matter 
volumes in the right posterior cerebellum have also been 
reported for criminal offenders as compared to controls [34, 
37]. Additionally, Leutgeb and colleagues (2015) reported a 
positive association between grey matter volumes of a clus-
ter in right Crus I and core psychopathy scores associated 
with the tendency to act selfishly and without remorse [34]. 
Meta-analytic results indicate that the correlations between 
right posterior cerebellar areas and aggression can in part 
be explained by their role in the processing of anger and 
threat-related stimuli [32]. The right-lateralised observa-
tions in the posterior cerebellum can be reconciled with 
the well-documented involvement of the left prefrontal cor-
tex in anger processing, approach-related motivation, and 

Fig. 2  BIS-11 total impulsivity scores and BIS-11 subscale scores 
modelled by cerebellar correlates from their most predictive model 
investigated through stepwise regression, corrected for age and sex. 
A Total impulsivity scores associated with grey matter volumes of 
the vermis and right posterior lobe. B Attentional impulsivity scores 
associated with grey matter volume of the vermis. C Motor impulsiv-
ity scores associated with grey matter volumes of the vermis and right 

posterior lobe. D Non-planning impulsivity scores associated with 
grey matter volumes of the vermis and right posterior lobe. Grey bars 
represent the 95% confidence interval of the regression coefficients. 
All grey matter volumes are normalised by z-transformation. Abbre-
viations: Att., attentional; GMV, grey matter volume; imp., impulsiv-
ity; N.P., non-planning; post., posterior
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aggressive behaviour (for reviews see [3, 87]). The crossed 
anatomic cerebello-thalamo-cortical connections that via the 
pontine nuclei form closed cerebello-cortical loops [83, 88] 
offer a functional neuroanatomical basis for right posterior 
cerebellar involvement in aggression.

Concerning the opposite volumetric findings in terms 
of the directionality, previous brain research suggests that 
the relation between grey matter volumes and functionality 
can be described by an inverted U-shaped curve [89]. This 
means that at one extreme, both low and high grey matter 
volumes can result in decreased functionality. The observed 
negative association between right posterior cerebellar grey 
matter volumes and physical aggression could speculatively 
involve reduced cerebello-dentato-thalamo-cortical inhibi-
tion of the left prefrontal cortex [90], thereby facilitating 
approach-related behaviour [87]. This volume-reduced 
functionality relationship is in line with previous research 
that found high levels of impulsivity and aggressiveness to 
be associated with damage as well as lower grey matter vol-
umes of the prefrontal cortex (for a review see [91]). Fur-
thermore, volumetric increases have been observed in brain 
regions involved in arousal, reward sensitivity, and irritabil-
ity [8, 92, 93], all factors which are implicated in impulsivity 
and aggression. For our cerebellar findings, this may indi-
cate that increased vermal volumes are associated with an 
increased input to arousal regions [49], and the tendency to 
approach- and reward-related motivational actions through 
cerebellar connections with the basal ganglia [75]. In con-
trast, relatively larger volumes of the vermis may also in part 
reflect unfinished neurodevelopmental processes, such as 
pruning [94], that could potentially underlie a less efficiently 
operating brain region. This theory is supported by previous 
lesion and malformation findings in the vermis, where an 
absent, damaged, or underdeveloped vermis was associated 
with increased impulsive and aggressive behaviour [13–15, 
20]. Of note, the inverted-U shape would link both small and 
large grey matter volumes to decreased functionality at the 
lower end of the functionality spectrum. Further research 
is needed to elucidate the specific mechanistic alterations 
in the cerebellar vermis and right posterior hemisphere in 
aggression and impulsivity.

While in the current study we found lobule-specific 
associations between right lobules VIIb-VIIIa and physi-
cal aggression, there is a growing body of research indi-
cating that functions in the cerebellum are not confined 
to lobular boundaries but extend over several lobules [29, 
95]. A recent fMRI-based topographic atlas developed by 
King et al. (2019) indicates that lobules VIIb and VIIIa are 
involved in (action) perception, attention, and (motor) plan-
ning [29]. This suggests that these functional attributes of 
the cerebellum play a role in physical aggression, and the 
neural processes of these functions converge at the level of 
these lobules.

Lastly, total and non-planning impulsivity were inversely 
associated with total right posterior cerebellum volume but 
only when we controlled for vermal volumes. This finding 
can be explained by the inclusion of vermal grey matter in 
the total volumes of the cerebellar hemispheres during the 
segmentation procedure. Since the grey matter volumes of 
the vermis correlated positively with the impulsivity scores, 
this may have obscured the inverse relationship with the 
right cerebellar hemisphere. The inverse relation is sup-
ported by several studies, including a study in boys with 
conduct disorder scoring high on motor impulsivity and non-
planning impulsivity who have lower grey matter volumes 
in right lobules VIIIb and X as compared to healthy controls 
[43]. In another study, adults with a borderline disorder with 
higher impulsivity scores were found to have significantly 
lower grey matter volumes in right lobule VI compared to 
healthy controls [48]. A study in patients with intermittent 
explosive disorder further provided evidence for lower grey 
matter volumes in right Crus I and II relative to healthy 
controls [44]. In sum, our and previous results suggest a 
dual role of the vermis and right cerebellar hemisphere in 
impulsivity.

On a final note, it should be mentioned that the correla-
tional nature of our study does not permit us to draw any 
causal inferences concerning the observed relations. Fur-
thermore, the use of self-report questionnaires in a healthy 
population may have limited clinical value. Nevertheless, 
the broad distribution of scores allowed us to work with 
substantial individual variation in self-reported aggression 
and impulsivity. Also, the cerebellar mechanisms underlying 
impulsivity and aggression cannot be addressed due to the 
static nature of structural anatomical scans used in our study 
and should be considered another limitation of this study. 
Future studies using fMRI and noninvasive brain stimulation 
may help to further elucidate the functional significance of 
our findings and contribute to understanding the cerebellar 
working mechanisms in reactive aggression.

In conclusion, our findings provide correlational evidence 
for the involvement of the cerebellar vermis and posterior 
lobules in impulsivity and physical aggression in healthy 
volunteers and offer a neuroanatomical basis for a cortico-
limbic-cerebellar circuit of reactive aggression.
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